Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.171
Filtrar
1.
Ecotoxicol Environ Saf ; 276: 116311, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615639

RESUMO

Prenatal environmental exposure could be an essential health risk factor associated with neurodevelopmental disorders in offspring. However, the exact mechanisms underlying the impact of prenatal PM2.5 exposure on offspring cognition remain unclear. In our recent study using a PM2.5 exposed pregnant mouse model, we observed significant synaptic dysfunction in the hippocampi of the offspring. Concurrently, the epigenetic regulator of KDM5A and the Shh signaling pathway exhibited decreased activities. Significantly, changes in hippocampal KDM5A and Shh levels directly correlated with PM2.5 exposure intensity. Subsequent experiments revealed a marked reduction in the expression of Shh signaling and related synaptic proteins when KDM5A was silenced in cells. Notably, the effects of KDM5A deficiency were reversed significantly with the supplementation of a Shh activator. Furthermore, our findings indicate that Shh activation significantly attenuates PM2.5-induced synaptic impairments in hippocampal neurons. We further demonstrated that EGR1, a transcriptional inhibitor, plays a direct role in KDM5A's regulation of the Shh pathway under conditions of PM2.5 exposure. Our results suggest that the KDM5A's inhibitory regulation on the Shh pathway through the EGR1 gene is a crucial epigenetic mechanism underlying the synaptic dysfunction in hippocampal neurons caused by maternal PM2.5 exposure. This emphasizes the role of epigenetic regulations in neurodevelopmental disorders caused by environmental factors.

2.
Nano Lett ; 24(15): 4311-4318, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587210

RESUMO

Chirality as an asymmetric property is prevalent in nature. In physics, the chirality of the elementary particles that make up matter has been widely studied and discussed, and nowadays, the concept has developed into the field of phonons. As an important fundamental excitation in condensed matter physics, phonons are traditionally considered to be linearly polarized and nonchiral. However, in recent years, the chirality of phonons has been revealed and further experimentally verified. The discovery has triggered a series of new explorations and developments in phonon-related physical processes. This Mini-Review provides an overview of the theoretical prediction of chiral phonons and multiple experimental detection methods and highlights the current key issues in the application of chiral phonons in different fields.

3.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559042

RESUMO

The MYC proto-oncogenes (c-MYC, MYCN , MYCL ) are among the most deregulated oncogenic drivers in human malignancies including high-risk neuroblastoma, 50% of which are MYCN -amplified. Genetically engineered mouse models (GEMMs) based on the MYCN transgene have greatly expanded the understanding of neuroblastoma biology and are powerful tools for testing new therapies. However, a lack of c-MYC-driven GEMMs has hampered the ability to better understand mechanisms of neuroblastoma oncogenesis and therapy development given that c-MYC is also an important driver of many high-risk neuroblastomas. In this study, we report two transgenic murine neuroendocrine models driven by conditional c-MYC induction in tyrosine hydroxylase (Th) and dopamine ß-hydroxylase (Dbh)-expressing cells. c-MYC induction in Th-expressing cells leads to a preponderance of Pdx1 + somatostatinomas, a type of pancreatic neuroendocrine tumor (PNET), resembling human somatostatinoma with highly expressed gene signatures of δ cells and potassium channels. In contrast, c-MYC induction in Dbh-expressing cells leads to onset of neuroblastomas, showing a better transforming capacity than MYCN in a comparable C57BL/6 genetic background. The c-MYC murine neuroblastoma tumors recapitulate the pathologic and genetic features of human neuroblastoma, express GD2, and respond to anti-GD2 immunotherapy. This model also responds to DFMO, an FDA-approved inhibitor targeting ODC1, which is a known MYC transcriptional target. Thus, establishing c-MYC-overexpressing GEMMs resulted in different but related tumor types depending on the targeted cell and provide useful tools for testing immunotherapies and targeted therapies for these diseases.

4.
Int J Environ Health Res ; : 1-16, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563461

RESUMO

Epidemiologic studies have suggested a possible association between air pollution and chronic obstructive pulmonary disease (COPD), but it is controversial and difficult to draw causal inferences. Five methods were adopted to evaluate the causal relationship between air pollution and COPD in European and East Asian populations by using MR Analysis. A statistically significant causal relationship between PM2.5 and COPD was observed in the European population (OR: 2.34; 95% CI: 1.06-5.05; p = 0.033). Statistical significance remained after adjustment for confounding factors (adjusted OR: 2.28; 95% CI: 1.01-5.20; p = 0.048). In East Asian populations, PM2.5 absorbance, a proxy for black carbon, was statistically associated with COPD (OR: 1.41; 95% CI: 1.09-1.81; p = 0.007). We did not adjust for confounders in East Asian populations, as the association was independent of known confounders (e.g. smoking, respiratory tract infections, etc.). In conclusion, increased concentrations of PM2.5 and PM2.5 absorbance were associated with an increased risk of COPD.

5.
Appl Opt ; 63(8): C1-C7, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38568621

RESUMO

Metamaterial filters represent an essential method for researching the miniaturization of infrared spectral detectors. To realize an 8-2 µm long-wave infrared tunable transmission spectral structure, an extraordinary optical transmission metamaterial model was designed based on the grating diffraction effect and surface plasmon polariton resonance theory. The model consisted of an Al grating array in the upper layer and a Ge substrate in the lower layer. We numerically simulated the effects of different structural parameters on the transmission spectra, such as grating height (h), grating width (w), grating distance (d), grating constant (p), and grating length (S 1), by utilizing the finite-difference time-domain method. Finally, we obtained the maximum transmittance of 81.52% in the 8-12 µm band range, with the corresponding structural parameters set to h=50n m, w=300n m, d=300n m, and S 1=48µm, respectively. After Lorentz fitting, a full width at half maximum of 0.94±0.01µm was achieved. In addition, the Ge substrate influence was taken into account for analyzing the model's extraordinary optical transmission performance. In particular, we first realized the continuous tuning performance at the transmission center wavelength (8-12 µm) of long-wave infrared within the substrate tuning thickness (D) range of 1.9-2.9 µm. The structure designed in this paper features tunability, broad spectral bandwidth, and miniaturization, which will provide a reference for the development of miniaturized long-wave infrared spectral filter devices.

6.
BMC Musculoskelet Disord ; 25(1): 252, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561733

RESUMO

BACKGROUND: Chronic neck pain (CNP) is a common public health problem that affects daily living activities and quality of life. There is biomechanical interdependence between the neck and scapula. Studies have shown that shoulder blade function might be related to chronic neck pain. We therefore evaluated the effects of scapular targeted therapy on neck pain and function in patients with CNP. METHODS: Databases, including MEDLINE (via PubMed), EMBASE (via Ovid), Ovid, Web of Science, and Scopus, were systematically searched for randomized controlled trials published in English investigating treatment of the scapula for CNP before July 16, 2023. RESULTS: A total of 313 participants were included from 8 RCTs. Compared with those in the control group, the intervention in the scapular treatment group exhibited greater improvement in pain intensity (standardized mean difference (SMD) = 2.55; 95% CI = 0.97 to 4.13; P = 0.002), with moderate evidence. Subgroup analysis for pain intensity revealed a significant difference between the sexes, with only the female population (SMD = 6.23, 95% CI = 4.80 to 7.65) showing better outcomes than those with both sexes (SMD = 1.07, 95% CI = 0.57 to 1.56) (p < 0.00001). However, moderate evidence demonstrated no improvement in neck disability after scapular treatment (SMD of 0.24[-0.14, 0.62] of Neck Disability Index or Northwick Park Neck Pain Questionnaire). No effect of scapular treatment was shown on the pressure pain threshold (PPT). The cervical range of motion (CROM) and electromyographic activity of neck muscles could not be conclusively evaluated due to limited support in the articles, and further study was needed. However, the patient's head forward posture appeared to be corrected after scapular treatment. CONCLUSION: Scapular therapy was beneficial for relieving pain intensity in patients with CNP, especially in women. Head forward posture might also be corrected with scapular therapy. However, scapular therapy may have no effect on the PPT or neck disability. However, whether scapular therapy could improve CROM and cervical muscle activation in patients with CNPs had not been determined and needed further study.


Assuntos
Dor Crônica , Cervicalgia , Masculino , Humanos , Feminino , Cervicalgia/diagnóstico , Cervicalgia/tratamento farmacológico , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Pescoço , Dor Crônica/diagnóstico , Dor Crônica/tratamento farmacológico , Escápula
8.
Cell Commun Signal ; 22(1): 210, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566195

RESUMO

BACKGROUND: Caspase Recruitment Domain-containing protein 9 (CARD9) expressed in myeloid cells has been demonstrated to play an antifungal immunity role in protecting against disseminated candidiasis. Hereditary CARD9 ablation leads to fatal disseminated candidiasis. However, the myeloid cell types and molecular mechanisms implicated in CARD9 protecting against disseminated candidiasis remain wholly elusive. METHODS: The role of CARD9 ablation in exacerbating disseminated candidiasis was determined in vivo and in vitro. The molecular mechanism by which CARD9 ablation promotes acute kidney injury in disseminated candidiasis was identified by RNA-sequencing analysis. The expression of mitochondrial proteins and ferroptosis-associated proteins were measured by Quantitative real-time PCR and western blot. RESULTS: CARD9 ablation resulted in a reduced proportion of myeloid-derived suppressor cells (MDSCs) and a substantially lower expression of solute carrier family 7 member 11 (SLC7A11) in the kidneys, which increased susceptibility to acute kidney injury and renal ferroptosis during disseminated Candida tropicalis (C. tropicalis) infection. Moreover, CARD9-deficient MDSCs were susceptible to ferroptosis upon stimulation with C. tropicalis, which was attributed to augmented mitochondrial oxidative phosphorylation (OXPHOS) caused by reduced SLC7A11 expression. Mechanistically, C-type lectin receptors (CLRs)-mediated recognition of C. tropicalis promoted the expression of SLC7A11 which was transcriptionally manipulated by the Syk-PKCδ-CARD9-FosB signaling axis in MDSCs. FosB enhanced SLC7A11 transcription by binding to the promoter of SLC7A11 in MDSCs stimulated with C. tropicalis. Mitochondrial OXPHOS, which was negatively regulated by SLC7A11, was responsible for inducing ferroptosis of MDSCs upon C. tropicalis stimulation. Finally, pharmacological inhibition of mitochondrial OXPHOS or ferroptosis significantly increased the number of MDSCs in the kidneys to augment host antifungal immunity, thereby attenuating ferroptosis and acute kidney injury exacerbated by CARD9 ablation during disseminated candidiasis. CONCLUSIONS: Collectively, our findings show that CARD9 ablation enhances mitochondria-mediated ferroptosis in MDSCs, which negatively regulates antifungal immunity. We also identify mitochondria-mediated ferroptosis in MDSCs as a new molecular mechanism of CARD9 ablation-exacerbated acute kidney injury during disseminated candidiasis, thus targeting mitochondria-mediated ferroptosis is a novel therapeutic strategy for acute kidney injury in disseminated candidiasis.


Assuntos
Injúria Renal Aguda , Candidíase , Ferroptose , Células Supressoras Mieloides , Camundongos , Animais , Antifúngicos , Camundongos Knockout
9.
J Invest Dermatol ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580106

RESUMO

Systemic sclerosis (SSc) is a challenging autoimmune disease characterized by progressive fibrosis affecting the skin and internal organs. Despite the known infiltration of macrophages and neutrophils, their precise contributions to SSc pathogenesis remain elusive. In this study, we elucidated that CD206hiMHCIIlo M2-like macrophages constitute the predominant pathogenic immune cell population in the fibrotic skin of a bleomycin (BLM)-induced SSc mouse model. These cells emerged as pivotal contributors to the profibrotic response by orchestrating the production of TGF-ß1 through a MerTK signaling-dependent manner. Notably, we observed that neutrophil infiltration was a prerequisite for the accumulation of M2-like macrophages. Strategies such as neutrophil depletion or inhibition of CXCR1/2 were proven effective in reducing M2-like macrophages, subsequently mitigating SSc progression. Detailed investigations revealed that in fibrotic skin, neutrophil-released neutrophil extracellular traps (NETs) were responsible for the differentiation of M2-like macrophages. Our findings illuminate the significant involvement of the neutrophil-macrophage-fibrosis axis in SSc pathogenesis, offering critical information for the development of potential therapeutic strategies.

10.
BMC Neurol ; 24(1): 132, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641827

RESUMO

BACKGROUND: Post-stroke cognitive impairment (PSCI) is the focus and difficulty of poststroke rehabilitation intervention with an incidence of up to 61%, which may be related to the deterioration of cerebrovascular function. Computer-aided cognitive training (CACT) can improve cognitive function through scientific training targeting activated brain regions, becoming a popular training method in recent years. Transcranial direct current stimulation (tDCS), a non-invasive brain stimulation technique, can regulate the cerebral vascular nerve function, and has an effect on the rehabilitation of cognitive dysfunction after stroke. This study examined the effectiveness of both CACT and tDCS on cognitive and cerebrovascular function after stroke, and explored whether CACT combined with tDCS was more effective. METHODS: A total of 72 patients with PSCI were randomly divided into the conventional cognitive training (CCT) group (n = 18), tDCS group (n = 18), CACT group (n = 18), and CACT combined with tDCS group (n = 18). Patients in each group received corresponding 20-minute treatment 15 times a week for 3 consecutive weeks. Montreal Cognitive Assessment (MoCA) and the Instrumental Activities of Daily Living Scale (IADL) were used to assess patients' cognitive function and the activities of daily living ability. Transcranial Doppler ultrasound (TCD) was used to assess cerebrovascular function, including cerebral blood flow velocity (CBFV), pulse index (PI), and breath holding index (BHI). These outcome measures were measured before and after treatment. RESULTS: Compared with those at baseline, both the MoCA and IADL scores significantly increased after treatment (P < 0.01) in each group. There was no significantly difference in efficacy among CCT, CACT and tDCS groups. The CACT combined with tDCS group showed greater improvement in MoCA scores compared with the other three groups (P < 0.05), especially in the terms of visuospatial and executive. BHI significantly improved only in CACT combined with tDCS group after treatment (p ≤ 0.05) but not in the other groups. Besides, no significant difference in CBFV or PI was found before and after the treatments in all groups. CONCLUSION: Both CACT and tDCS could be used as an alternative to CCT therapy to improve cognitive function and activities of daily living ability after stroke. CACT combined with tDCS may be more effective improving cognitive function and activities of daily living ability in PSCI patients, especially visuospatial and executive abilities, which may be related to improved cerebral vasomotor function reflected by the BHI. TRIAL REGISTRATION NUMBER: The study was registered in the Chinese Registry of Clinical Trials (ChiCTR2100054063). Registration date: 12/08/2021.


Assuntos
Disfunção Cognitiva , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Atividades Cotidianas , Reabilitação do Acidente Vascular Cerebral/métodos , Recuperação de Função Fisiológica , Treino Cognitivo , Acidente Vascular Cerebral/complicações , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Computadores
11.
EBioMedicine ; 103: 105118, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38614011

RESUMO

BACKGROUND: Microplastic (MP) pollution has emerged as a significant environmental concern worldwide. While extensive research has focused on their presence in marine organisms and ecosystems, their potential impact on human health, particularly on the circulatory system, remains understudied. This project aimed to identify and quantify the mass concentrations, polymer types, and physical properties of MPs in human thrombi surgically retrieved from both arterial and venous systems at three anatomically distinct sites, namely, cerebral arteries in the brain, coronary arteries in the heart, and deep veins in the lower extremities. Furthermore, this study aimed to investigate the potential association between the levels of MPs and disease severity. METHODS: Thrombus samples were collected from 30 patients who underwent thrombectomy procedures due to ischaemic stroke (IS), myocardial infarction (MI), or deep vein thrombosis (DVT). Pyrolysis-gas chromatography mass spectrometry (Py-GC/MS) was employed to identify and quantify the mass concentrations of the MPs. Laser direct infrared (LDIR) spectroscopy and scanning electron microscopy (SEM) were used to analyse the physical properties of the MPs. Demographic and clinical information were also examined. A rigorous quality control system was used to eliminate potential environmental contamination. FINDINGS: MPs were detected by Py-GC/MS in 80% (24/30) of the thrombi obtained from patients with IS, MI, or DVT, with median concentrations of 61.75 µg/g, 141.80 µg/g, and 69.62 µg/g, respectively. Among the 10 target types of MP polymers, polyamide 66 (PA66), polyvinyl chloride (PVC), and polyethylene (PE) were identified. Further analyses suggested that higher concentrations of MPs may be associated with greater disease severity (adjusted ß = 7.72, 95% CI: 2.01-13.43, p < 0.05). The level of D-dimer in the MP-detected group was significantly higher than that in the MP-undetected group (8.3 ± 1.5 µg/L vs 6.6 ± 0.5 µg/L, p < 0.001). Additionally, LDIR analysis showed that PE was dominant among the 15 types of identified MPs, accounting for 53.6% of all MPs, with a mean diameter of 35.6 µm. The shapes of the polymers detected using LDIR and SEM were found to be heterogeneous. INTERPRETATION: This study presents both qualitative and quantitative evidence of the presence of MPs, and their mass concentrations, polymer types, and physical properties in thrombotic diseases through the use of multimodal detection methods. Higher concentrations of MPs may be associated with increased disease severity. Future research with a larger sample size is urgently needed to identify the sources of exposure and validate the observed trends in the study. FUNDING: This study was funded by the SUMC Scientific Research Initiation Grant (SRIG, No. 009-510858038), Postdoctoral Research Initiation Grant (No. 202205230031-3), and the 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant (No. 2020LKSFG02C).

12.
J Biochem Mol Toxicol ; 38(4): e23676, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561971

RESUMO

Although the treatment of ovarian cancer has made great progress, there are still many patients who are not timely detected and given targeted therapy due to unknown pathogenesis. Recent studies have found that hsa_circ_0015326 is upregulated in ovarian cancer and is involved in the proliferation, invasion, and migration of ovarian cancer cells. However, whether hsa_circ_0015326 can be used as a new target of ovarian cancer needs further investigation. Therefore, the effect of hsa_circ_0015326 on epithelial ovarian cancer was investigated in this study. At first, si-hsa_circ_0015326 lentivirus was transfected into epithelial ovarian cancer cells. Then real-time fluorescence quantitative PCR (qRT-PCR) was used to detect hsa_circ_0015326 level. The proliferation of ovarian cancer cells was detected by CCK-8 assay. The horizontal and vertical migration abilities of the cells were detected by wound-healing assay and Transwell assay, respectively. Transwell assay was also used to determine the invasion rate. As for the apoptosis rate, it was assessed by flow cytometry. As a result, the expression level of hsa_circ_0015326 in A2780 and SKOV3 was found to be higher than that in IOSE-80. However, after transfecting si-hsa_circ_0015326 and si-NC into the cells, the proliferation, migration, and invasion abilities of A2780 and SKOV3 cells in the si-hsa_circ_0015326 group were significantly reduced in comparison to those in the si-NC and mock groups, while their apoptosis rates were elevated. Collectively, silencing hsa_circ_0015326 bears the capability of inhibiting the proliferation, migration, and invasion of ovarian cancer cells while increasing apoptosis rate. It can be concluded that hsa_circ_0015326 promotes the malignant biological activities of epithelial ovarian cancer cells.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , RNA/metabolismo , Carcinoma Epitelial do Ovário/genética , RNA Circular/genética , RNA Circular/metabolismo , Linhagem Celular Tumoral , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proliferação de Células , Apoptose , MicroRNAs/metabolismo , Movimento Celular
13.
Sci Total Environ ; 927: 172236, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582123

RESUMO

Pindolol (PIN) is a commonly used ß-blocker drug and has been frequently detected in various natural waters. Comprehensive understanding of its environmental photochemical transformation is necessary to assess its environmental risk. In this study, the photodegradation kinetics and mechanisms of PIN in both freshwater and coastal water were investigated for the first time. The photodegradation experiments were carried out by steady-state photochemical experiment under simulated sunlight irradiation. The results showed that the photodegradation rate of PIN in the freshwater of the Pearl River estuary was significantly faster than that in its downstream coastal water. In river water, PIN can undergo both direct photolysis and indirect photolysis induced by riverine dissolved organic matter (DOM) mainly through excited triplet-state of DOM and singlet oxygen, while direct photolysis dominated its degradation in coastal water. The promotion effect was found to be much greater for Suwannee River Natural Organic Matter (SRNOM) than that of the sampled riverine DOM, due to its high steady-state concentrations of reactive species. Interestingly, coastal DOM in northern and southern China were found to have similar promotion effects on PIN photodegradation for the first time, but both less than that of riverine DOM. A total of seven degradation products of PIN resulting from hydroxylation, hydrogen abstraction and cleavage of ether bond were identified. Biological toxicity of one products were found to be higher than that of PIN. These results are of significance for knowing the persistence and ecological risk of PIN in natural waters.

14.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611820

RESUMO

The level of fluoride ions (F-) in the human body is closely related to various pathological and physiological states, and the rapid detection of F- is important for studying physiological processes and the early diagnosis of diseases. In this study, the detailed sensing mechanism of a novel high-efficiency probe (PBT) based on 2-(2'-hydroxyphenyl)-benzothiazole derivatives towards F- has been fully investigated based on density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. F- attacks the O-P bond of PBT to cleavage the dimethylphosphinothionyl group, and the potential products were evaluated by Gibbs free energy and spectroscopic analyses, which ultimately identified the product as HBT-Enol1 with an intramolecular hydrogen bond. Bond parameters, infrared vibrational spectroscopy and charge analysis indicate that the hydrogen bond is enhanced at the excited state (S1), favoring excited state intramolecular proton transfer (ESIPT). The mild energy barrier further evidences the occurrence of ESIPT. Combined with frontier molecular orbital (FMO) analysis, the fluorescence quenching of PBT was attributed to the photoinduced electron transfer (PET) mechanism and the fluorescence turn-on mechanism of the product was attributed to the ESIPT process of HBT-Enol1.

15.
Dermatology ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599182

RESUMO

Introduction Pilomatrixoma is a benign skin neoplasm that is common in children and is often misdiagnosed. This study aimed to summarize the clinical and pathological features of pilomatrixoma in children. Methods Data on demographic information, clinical and pathological features, diagnosis, and treatment of 171 patients with pilomatrixoma from Shenzhen Baoan Women's and Children's Hospital were collected and analyzed retrospectively. Results The mean age of the patients was 5.7 (standard deviation (SD) = 3.9) year-old, and there were two age peaks (≤1 year-old, 5-11 years old) and two age valleys (2-4 years old, ≥ 12 years old). The mean disease course was 9.3 (SD = 14.1) months, 69.0%, 86.5%, and 95.3% of the patients' disease course in 6 months, 12 months, and 24 months, respectively. The mean tumor volume is 0.6 (SD = 1.0) cm3, 81.3% of the patients' tumor volume ≤ 1.0 cm3. Tumors were distributed sequentially in the head and neck (77.2%), upper limbs (12.9%), trunk (7.6%), and lower limbs (2.3%). The correct rates of clinical and ultrasonic diagnosis were 50.9% and 38.6%, respectively. The two most common pathological features of pilomatrixoma were shadow cells (99.4%) and basaloid cells (94.7%). There were no significant differences in age, disease course, or tumor volume between the male and female patients (P > 0.05). The age and tumor volume of the patients in different body parts were significantly different (P1 = 3.10E-05 and P2 = 5.60E-05, respectively). The correlation between the disease course and tumor volume was positively significant (P ≤ 0.05). There was a significantly correlation between the disease course and tumor volume in patients with tumors at upper limbs (P = 0.03). Conclusion The age of children with pilomatrixoma presented two peaks and two valleys. Most patients had disease courses in 24 months and with tumor volumes ≤ 1.0 cm3. The correct rates of clinical and ultrasonic diagnosis were relatively low. The head and neck are the most common distribution sites of pilomatrixoma, shadow cells and basaloid cells are the most common pathological features. The tumor volume is positively correlated with disease course in patients with pilomatrixoma.

17.
Open Life Sci ; 19(1): 20220849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633412

RESUMO

NaHCO3 accelerates the aging of tobacco leaves; however, the underlying molecular mechanisms have not been elucidated. This study aimed to explore the mechanism of NaHCO3 in the promotion of tobacco leaf maturation using transcriptome analysis. Leaves on plants or detached leaves of the tobacco variety, Honghua Dajinyuan, were sprayed with or without 1% NaHCO3. The leaf yellowing was observed, the pigment content and enzyme activities were determined and RNA sequencing (RNA-seq) was performed. Spraying NaHCO3 onto detached leaves was found to promote leaf yellowing. Pigment content, catalase activity, and superoxide dismutase activity significantly decreased, whereas peroxidase activity and malondialdehyde content significantly increased. RNA-seq demonstrated that spraying with NaHCO3 upregulated genes associated with cysteine and methionine metabolism; alpha-linolenic acid metabolism; and phenylalanine, tyrosine, and tryptophan biosynthesis and downregulated genes related to photosynthesis and carotenoid biosynthesis. Genes correlated with autophagy-other, valine, leucine, and isoleucine degradation, and the MAPK signaling pathway were upregulated while those correlated with DNA replication, phenylalanine, and tyrosine and tryptophan biosynthesis were downregulated in detached leaves sprayed with NaHCO3 compared with the plant leaves sprayed with NaHCO3. Overall, this study is the first to elucidate the molecular and metabolic mechanisms of NaHCO3 in the promotion of tobacco leaf maturation.

18.
Infect Drug Resist ; 17: 1477-1490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38634066

RESUMO

Purpose: To analyze the time trends in the notification rates of registered tuberculosis (TB) and bacteriologically confirmed TB in Shandong Province. And analyze the changes in TB treatment outcomes during 2005-2021. Patients and Methods: The information of TB patients registered in the Shandong Information Center for Disease Control and Prevention (CDC) was collected during 2005-2021. We calculated the notification rates of registered TB and bacteriologically confirmed TB. Moreover, we calculated the year-to-year change rate of TB in treatment outcomes before and after COVID-19. The time trends were analyzed using the joinpoint regression method and illustrated as the annual percentage change (APC) of notification rates. Results: A total of 236,898 cases of TB were diagnosed during 2005-2021, of which 51.11% were bacteriologically confirmed cases. Since 2008, the notification rates of registered TB have declined. The notification rates of bacteriologically confirmed TB had been declining during 2005-2016, then remained stable after 2016. In subgroup, the notification rates of both registered TB and bacteriologically confirmed TB were higher among men, rural residents, and people aged ≥ 60 years. Compared with clinically confirmed TB, bacteriologically confirmed TB has shown higher rates of poor outcomes since 2008 and higher case fatality rate since 2005. The rate of poor outcomes remained stable during 2008-2019. However, after the COVID-19 outbreak, the rate of poor outcomes and case fatality rate of TB has risen significantly. Conclusion: After unremitting efforts to fight against TB, the notification rates of registered TB and bacteriologically confirmed TB declined in Shandong Province. The rate of poor outcomes remained stable during 2008-2019, then rise significantly after the COVID-19 outbreak. In the context of the long-term existence of COVID-19, further efforts should be made in TB diagnosis and treatment among high-risk population, especially with regard to males, rural residents and older adults.

19.
J Agric Food Chem ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634420

RESUMO

Plant pathogens have frequently shown multidrug resistance (MDR) in the field, often linked to efflux and sometimes metabolism of fungicides. To investigate the potential role of metabolic resistance in B. cinerea strains showing MDR, the azoxystrobin-sensitive strain B05.10 and -resistant strain Bc242 were treated with azoxystrobin. The degradation half-life of azoxystrobin in Bc242 (9.63 days) was shorter than that in B05.10 (28.88 days). Azoxystrobin acid, identified as a metabolite, exhibited significantly lower inhibition rates on colony and conidia (9.34 and 11.98%, respectively) than azoxystrobin. Bc242 exhibited higher expression levels of 34 cytochrome P450s (P450s) and 11 carboxylesterase genes (CarEs) compared to B05.10 according to RNA-seq analysis. The expression of P450 genes Bcin_02g01260 and Bcin_12g06380, along with the CarEs Bcin_12g06360 in Saccharomyces cerevisiae, resulted in reduced sensitivity to various fungicides, including azoxystrobin, kresoxim-methyl, pyraclostrobin, trifloxystrobin, iprodione, and carbendazim. Thus, the mechanism of B. cinerea MDR is linked to metabolism mediated by the CarE and P450 genes.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38586879

RESUMO

Atherosclerosis is an inflammatory disease of blood vessels involving the immune system. Natural killer T (NKT) cells, as crucial components of the innate and acquired immune systems, play critical roles in the development of atherosclerosis. However, the mechanism and clinical relevance of NKT cells in early atherosclerosis are largely unclear. Our findings demonstrated that there were higher populations of NKT cells and interferon gamma (IFN-γ)-producing NKT cells in the peripheral blood of patients with hyperlipidemia and in the aorta, blood, spleen, and bone marrow of early atherosclerotic mice compared to control groups. Moreover, we discovered that the infiltration of M1 macrophages and CD1d expression on M1 macrophages in atherosclerotic mice climbed remarkably. CD1d expression increased in M1 macrophages stimulated by oxidized low-density lipoprotein (ox-LDL) ex vivo and in vitro. Ex vivo co-culture of macrophages with NKT cells revealed that ox-LDL-induced M1 macrophages presented lipid antigen alpha-galactosylceramide (α-Galcer) to NKT cells via CD1d, enabling NKT cells to express more IFN-γ. Furthermore, a greater proportion of CD1d+monocytes and CD1d+M1 monocytes were found in peripheral blood of hyperlipidemic patients compared with that of healthy donors. Positive correlations were found between CD1d+ M1 monocytes and NKT cells or IFN-γ+ NKT cells in hyperlipidemic patients. Our findings illustrate that M1 macrophages stimulate NKT cells to secret IFN-γ via CD1d presenting α-Galcer, which may accelerate the progression of early atherosclerosis. Inhibiting lipid antigen presentation by M1 macrophages to NKT cells may be a promising immune target for the treatment of early atherosclerosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...